TTGO ESP32 OLED LORA. Doesn't work oled

Doesn’t work oled. I am loading the program ttn-abp and doesn’t work!!
here below my program.

/*******************************************************************************
 * Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman
 *
 * Permission is hereby granted, free of charge, to anyone
 * obtaining a copy of this document and accompanying files,
 * to do whatever they want with them without any restriction,
 * including, but not limited to, copying, modification and redistribution.
 * NO WARRANTY OF ANY KIND IS PROVIDED.
 *
 * This example sends a valid LoRaWAN packet with payload "Hello,
 * world!", using frequency and encryption settings matching those of
 * the The Things Network.
 *
 * This uses ABP (Activation-by-personalisation), where a DevAddr and
 * Session keys are preconfigured (unlike OTAA, where a DevEUI and
 * application key is configured, while the DevAddr and session keys are
 * assigned/generated in the over-the-air-activation procedure).
 *
 * Note: LoRaWAN per sub-band duty-cycle limitation is enforced (1% in
 * g1, 0.1% in g2), but not the TTN fair usage policy (which is probably
 * violated by this sketch when left running for longer)!
 *
 * To use this sketch, first register your application and device with
 * the things network, to set or generate a DevAddr, NwkSKey and
 * AppSKey. Each device should have their own unique values for these
 * fields.
 *
 * Do not forget to define the radio type correctly in config.h.
 *
 *******************************************************************************/

#include <lmic.h>
#include <hal/hal.h>
#include <SPI.h>
#include <U8x8lib.h>
#define BUILTIN_LED 25

// the OLED used
U8X8_SSD1306_128X64_NONAME_SW_I2C u8x8(/* clock=*/ 15, /*data=*/ 4, /* reset=*/ 16); 

// LoRaWAN NwkSKey, network session key
// This is the default Semtech key, which is used by the early prototype TTN
// network.
static const PROGMEM u1_t NWKSKEY[16] = { 0xFB, 0x78, 0xC2,0x36, 0xA0, 0xA0, 0x7B, 0xE6, 0x7E, 0x5E, 0x62, 0xE2, 0x0A, 0xEB, 0x53, 0x27 };

// LoRaWAN AppSKey, application session key
// This is the default Semtech key, which is used by the early prototype TTN
// network.
static const u1_t PROGMEM APPSKEY[16] = { 0x4E, 0xC3, 0x3D, 0x94, 0x2A, 0xCD, 0x33, 0xE9, 0x83, 0xA4, 0xF4, 0x4C, 0x6C, 0x18, 0x1D, 0xCE };

// LoRaWAN end-device address (DevAddr)
static const u4_t DEVADDR = 0x26011B1D ; // <-- Change this address for every node!

// These callbacks are only used in over-the-air activation, so they are
// left empty here (we cannot leave them out completely unless
// DISABLE_JOIN is set in config.h, otherwise the linker will complain).
void os_getArtEui (u1_t* buf) { }
void os_getDevEui (u1_t* buf) { }
void os_getDevKey (u1_t* buf) { }

static uint8_t mydata[] = "Hello, world!";
static osjob_t sendjob;

// Schedule TX every this many seconds (might become longer due to duty
// cycle limitations).
const unsigned TX_INTERVAL = 30;
//For TTGO LoRa32 V2 use:


// Pin mapping
const lmic_pinmap lmic_pins = {
    .nss = 18, 
    .rxtx = LMIC_UNUSED_PIN,
    .rst = LMIC_UNUSED_PIN,
    //If DIO2 is not connected use:
    .dio = {/*dio0*/ 26, /*dio1*/ 33, /*dio2*/ LMIC_UNUSED_PIN} 
    //If DIO2 is connected use:
    //.dio = {/*dio0*/ 26, /*dio1*/ 33, /*dio2*/ 32} 
};

void onEvent (ev_t ev) {
    Serial.print(os_getTime());
    u8x8.setCursor(0, 5);
 u8x8.printf("TIME %lu", os_getTime()); 
    Serial.print(": ");
    switch(ev) {
        case EV_SCAN_TIMEOUT:
            Serial.println(F("EV_SCAN_TIMEOUT"));
            u8x8.drawString(0, 7, "EV_SCAN_TIMEOUT");
            break;
        case EV_BEACON_FOUND:
            Serial.println(F("EV_BEACON_FOUND"));
            u8x8.drawString(0, 7, "EV_BEACON_FOUND");
            break;
        case EV_BEACON_MISSED:
            Serial.println(F("EV_BEACON_MISSED"));
            u8x8.drawString(0, 7, "EV_BEACON_MISSED");
            break;
        case EV_BEACON_TRACKED:
            Serial.println(F("EV_BEACON_TRACKED"));
            u8x8.drawString(0, 7, "EV_BEACON_TRACKED");
            break;
        case EV_JOINING:
            Serial.println(F("EV_JOINING"));
            u8x8.drawString(0, 7, "EV_JOINING");
            break;
        case EV_JOINED:
            Serial.println(F("EV_JOINED"));
            u8x8.drawString(0, 7, "EV_JOINED");
            LMIC_setLinkCheckMode(0); 
            break;
        case EV_RFU1:
            Serial.println(F("EV_RFU1"));
            u8x8.drawString(0, 7, "EV_RFU1");
            break;
        case EV_JOIN_FAILED:
            Serial.println(F("EV_JOIN_FAILED"));
            u8x8.drawString(0, 7, "EV_JOIN_FAILED");
            break;
        case EV_REJOIN_FAILED:
            Serial.println(F("EV_REJOIN_FAILED"));
            u8x8.drawString(0, 7, "EV_REJOIN_FAILED");
            break;
        case EV_TXCOMPLETE:
            Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
            u8x8.drawString(0, 7, "EV_TXCOMPLETE");
            if (LMIC.txrxFlags & TXRX_ACK)
              Serial.println(F("Received ack"));
              u8x8.drawString(0, 7, "Received ACK");
            if (LMIC.dataLen) {
              Serial.println(F("Received "));
              u8x8.drawString(0, 6, "RX ");
              Serial.println(LMIC.dataLen);
              u8x8.setCursor(4, 6);
              u8x8.printf("%i bytes", LMIC.dataLen);
              Serial.println(F(" bytes of payload"));
              u8x8.setCursor(0, 7);
              u8x8.printf("RSSI %d SNR %.1d", LMIC.rssi,LMIC.snr); 
            }
            // Schedule next transmission
            os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send);
            break;
        case EV_LOST_TSYNC:
            Serial.println(F("EV_LOST_TSYNC"));
            u8x8.drawString(0, 7, "EV_LOST_TSYNC");
            break;
        case EV_RESET:
            Serial.println(F("EV_RESET"));
            u8x8.drawString(0, 7, "EV_RESET");
            break;
        case EV_RXCOMPLETE:
            // data received in ping slot
            Serial.println(F("EV_RXCOMPLETE"));
            u8x8.drawString(0, 7, "EV_RXCOMPLETE");
            break;
        case EV_LINK_DEAD:
            Serial.println(F("EV_LINK_DEAD"));
            u8x8.drawString(0, 7, "EV_LINK_DEAD");
            break;
        case EV_LINK_ALIVE:
            Serial.println(F("EV_LINK_ALIVE"));
            u8x8.drawString(0, 7, "EV_LINK_ALIVE");
            break;
         default:
            Serial.println(F("Unknown event"));
            u8x8.setCursor(0, 7);
            u8x8.printf("UNKNOWN EVENT %d", ev);
            break;
    }
}

void do_send(osjob_t* j){
    // Check if there is not a current TX/RX job running
    if (LMIC.opmode & OP_TXRXPEND) {
        Serial.println(F("OP_TXRXPEND, not sending"));
        u8x8.drawString(0, 7, "OP_TXRXPEND, not sent");
    } else {
        // Prepare upstream data transmission at the next possible time.
        LMIC_setTxData2(1, mydata, sizeof(mydata)-1, 0);
        Serial.println(F("Packet queued"));
        u8x8.drawString(0, 7, "PACKET QUEUED");
    }
    // Next TX is scheduled after TX_COMPLETE event.
}

void setup() {
    Serial.begin(115200);
    Serial.println(F("Starting"));

    u8x8.begin();
    u8x8.setFont(u8x8_font_chroma48medium8_r);
    u8x8.drawString(0, 1, "LoRaWAN LMiC TTN Node..."); 

    SPI.begin(5, 19, 27);
    #ifdef VCC_ENABLE
    // For Pinoccio Scout boards
    pinMode(VCC_ENABLE, OUTPUT);
    digitalWrite(VCC_ENABLE, HIGH);
    delay(1000);
    #endif

    // LMIC init
    os_init();
    // Reset the MAC state. Session and pending data transfers will be discarded.
    LMIC_reset();

    // Set static session parameters. Instead of dynamically establishing a session
    // by joining the network, precomputed session parameters are be provided.
    #ifdef PROGMEM
    // On AVR, these values are stored in flash and only copied to RAM
    // once. Copy them to a temporary buffer here, LMIC_setSession will
    // copy them into a buffer of its own again.
    uint8_t appskey[sizeof(APPSKEY)];
    uint8_t nwkskey[sizeof(NWKSKEY)];
    memcpy_P(appskey, APPSKEY, sizeof(APPSKEY));
    memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY));
    LMIC_setSession (0x1, DEVADDR, nwkskey, appskey);
    #else
    // If not running an AVR with PROGMEM, just use the arrays directly
    LMIC_setSession (0x1, DEVADDR, NWKSKEY, APPSKEY);
    #endif

#if defined(CFG_eu868)
// Set up the channels used by the Things Network, which corresponds
// to the defaults of most gateways. Without this, only three base
// channels from the LoRaWAN specification are used, which certainly
// works, so it is good for debugging, but can overload those
// frequencies, so be sure to configure the full frequency range of
// your network here (unless your network autoconfigures them).
// Setting up channels should happen after LMIC_setSession, as that
// configures the minimal channel set.
// NA-US channels 0-71 are configured automatically
LMIC_setupChannel(0, 868100000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
LMIC_setupChannel(1, 868300000, DR_RANGE_MAP(DR_SF12, DR_SF7B), BAND_CENTI);      // g-band
LMIC_setupChannel(2, 868500000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
LMIC_setupChannel(3, 867100000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
LMIC_setupChannel(4, 867300000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
LMIC_setupChannel(5, 867500000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
LMIC_setupChannel(6, 867700000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
LMIC_setupChannel(7, 867900000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
LMIC_setupChannel(8, 868800000, DR_RANGE_MAP(DR_FSK,  DR_FSK),  BAND_MILLI);      // g2-band
// TTN defines an additional channel at 869.525Mhz using SF9 for class B
// devices' ping slots. LMIC does not have an easy way to define set this
// frequency and support for class B is spotty and untested, so this
// frequency is not configured here.
#elif defined(CFG_us915)
// NA-US channels 0-71 are configured automatically
// but only one group of 8 should (a subband) should be active
// TTN recommends the second sub band, 1 in a zero based count.
// https://github.com/TheThingsNetwork/gateway-conf/blob/master/US-global_conf.json
LMIC_selectSubBand(1);
#endif

// Disable link check validation
LMIC_setLinkCheckMode(0);

// TTN uses SF9 for its RX2 window.
LMIC.dn2Dr = DR_SF9;

// Set data rate and transmit power for uplink (note: txpow seems to be ignored by the library)
LMIC_setDrTxpow(DR_SF7,14);

// Start job
do_send(&sendjob);
}

void loop() {
os_runloop_once();
}

Did one of the Example programs thats in the OLED library work ?

Or are you sure the OLED actually works when there are no other components connected ?

Not work any example. All the example executed gave me error. The library is U8g2

Dont know what you mean by that.

When troubleshooting issues like this, you need to go back to the smallest program that shows the problem. There are examples in the U8g2 library, these examples are known to work, so try one of those before trying your much larger program, you need to know if the OLED works or not.

ok very much thanks LoRaTracker. Solve!