So I am using the LoRa Dragino GPS Shield and I have based my code on this Github Repository. The tutorial I followed was from wiki dragino. I have changed the code but for some reason I am unable to get the decoded values correctly. Have I allocated lesser bits for temperature and turbidity sensor? I am using DS18B20 and Turbidity sensor. Here is my code:
#include <lmic.h>
#include <hal/hal.h>
#include <SPI.h>
#include <OneWire.h>
#include <DallasTemperature.h>
#include <SoftwareSerial.h> //Not needed if using Arduino Mega
#include <TinyGPS.h>
TinyGPS gps;
SoftwareSerial ss(3, 4); // Arduino RX, TX to conenct to GPS module.
#define ONE_WIRE_BUS A3
OneWire oneWire(ONE_WIRE_BUS);
DallasTemperature sensors(&oneWire);
float temperature,turbidity,turbidity1;
#define Turbidity_dpin A0
#define Temperature_dpin A3
static void smartdelay(unsigned long ms);
unsigned int count = 1; //For times count
float flat, flon,falt;
static uint8_t mydata[19] = {0x05,0x67,0x00,0x02,0x68,0x00,0x03,0x88,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x65};
/* LoRaWAN NwkSKey, network session key
This is the default Semtech key, which is used by the prototype TTN
network initially.
ttn*/
static const PROGMEM u1_t NWKSKEY[16] = { };
/* LoRaWAN AppSKey, application session key
This is the default Semtech key, which is used by the prototype TTN
network initially.
ttn*/
static const u1_t PROGMEM APPSKEY[16] = { };
/*
LoRaWAN end-device address (DevAddr)
See http://thethingsnetwork.org/wiki/AddressSpace
ttn*/
static const u4_t DEVADDR = 0x000000;
/* These callbacks are only used in over-the-air activation, so they are
left empty here (we cannot leave them out completely unless
DISABLE_JOIN is set in config.h, otherwise the linker will complain).*/
void os_getArtEui (u1_t* buf) { }
void os_getDevEui (u1_t* buf) { }
void os_getDevKey (u1_t* buf) { }
static osjob_t initjob,sendjob,blinkjob;
/* Schedule TX every this many seconds (might become longer due to duty
cycle limitations).*/
const unsigned TX_INTERVAL = 10;
// Pin mapping
const lmic_pinmap lmic_pins = {
.nss = 10,
.rxtx = LMIC_UNUSED_PIN,
.rst = 9,
.dio = {2, 6, 7},
};
void do_send(osjob_t* j){
// Check if there is not a current TX/RX job running
if (LMIC.opmode & OP_TXRXPEND) {
Serial.println("OP_TXRXPEND, not sending");
} else {
GPSRead();
Tem();
printdata();
// Prepare upstream data transmission at the next possible time.
// LMIC_setTxData2(1,datasend,sizeof(datasend)-1,0);
LMIC_setTxData2(1, mydata, sizeof(mydata), 0);
Serial.println("Packet queued");
Serial.print("LMIC.freq:");
Serial.println(LMIC.freq);
Serial.println("Receive data:");
}
// Next TX is scheduled after TX_COMPLETE event.
}
void onEvent (ev_t ev) {
Serial.print(os_getTime());
Serial.print(": ");
Serial.println(ev);
switch(ev) {
case EV_SCAN_TIMEOUT:
Serial.println(F("EV_SCAN_TIMEOUT"));
break;
case EV_BEACON_FOUND:
Serial.println(F("EV_BEACON_FOUND"));
break;
case EV_BEACON_MISSED:
Serial.println(F("EV_BEACON_MISSED"));
break;
case EV_BEACON_TRACKED:
Serial.println(F("EV_BEACON_TRACKED"));
break;
case EV_JOINING:
Serial.println(F("EV_JOINING"));
break;
case EV_JOINED:
Serial.println(F("EV_JOINED"));
break;
case EV_RFU1:
Serial.println(F("EV_RFU1"));
break;
case EV_JOIN_FAILED:
Serial.println(F("EV_JOIN_FAILED"));
break;
case EV_REJOIN_FAILED:
Serial.println(F("EV_REJOIN_FAILED"));
break;
case EV_TXCOMPLETE:
Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
Serial.println(F(""));
if(LMIC.dataLen) {
// data received in rx slot after tx
Serial.print(F("Data Received: "));
Serial.write(LMIC.frame+LMIC.dataBeg, LMIC.dataLen);
Serial.println();
}
// Schedule next transmission
os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send);
break;
case EV_LOST_TSYNC:
Serial.println(F("EV_LOST_TSYNC"));
break;
case EV_RESET:
Serial.println(F("EV_RESET"));
break;
case EV_RXCOMPLETE:
// data received in ping slot
Serial.println(F("EV_RXCOMPLETE"));
break;
case EV_LINK_DEAD:
Serial.println(F("EV_LINK_DEAD"));
break;
case EV_LINK_ALIVE:
Serial.println(F("EV_LINK_ALIVE"));
break;
default:
Serial.println(F("Unknown event"));
break;
}
}
void setup() {
// initialize digital pin as an output.
sensors.begin();
Serial.begin(9600);
// ss.begin(9600);
while(!Serial);
Serial.println(F("LoRa GPS Example---- "));
Serial.println(F("Connect to TTN"));
#ifdef VCC_ENABLE
// For Pinoccio Scout boards
pinMode(VCC_ENABLE, OUTPUT);
digitalWrite(VCC_ENABLE, HIGH);
delay(1000);
#endif
// LMIC init
os_init();
// Reset the MAC state. Session and pending data transfers will be discarded.
LMIC_reset();
/*LMIC_setClockError(MAX_CLOCK_ERROR * 1/100);
Set static session parameters. Instead of dynamically establishing a session
by joining the network, precomputed session parameters are be provided.*/
#ifdef PROGMEM
/* On AVR, these values are stored in flash and only copied to RAM
once. Copy them to a temporary buffer here, LMIC_setSession will
copy them into a buffer of its own again.*/
uint8_t appskey[sizeof(APPSKEY)];
uint8_t nwkskey[sizeof(NWKSKEY)];
memcpy_P(appskey, APPSKEY, sizeof(APPSKEY));
memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY));
LMIC_setSession (0x1, DEVADDR, nwkskey, appskey);
#else
// If not running an AVR with PROGMEM, just use the arrays directly
LMIC_setSession (0x1, DEVADDR, NWKSKEY, APPSKEY);
#endif
// Disable link check validation
LMIC_setLinkCheckMode(0);
// TTN uses SF9 for its RX2 window.
LMIC.dn2Dr = DR_SF9;
// Set data rate and transmit power (note: txpow seems to be ignored by the library)
LMIC_setDrTxpow(DR_SF7,14);
// Start job
do_send(&sendjob);
}
void GPSRead()
{
unsigned long age;
gps.f_get_position(&flat, &flon, &age);
falt=gps.f_altitude(); //get altitude
flon == TinyGPS::GPS_INVALID_F_ANGLE ? 0.0 : flon, 6;//save six decimal places
flat == TinyGPS::GPS_INVALID_F_ANGLE ? 0.0 : flat, 6;
falt == TinyGPS::GPS_INVALID_F_ANGLE ? 0.0 : falt, 2;//save two decimal places
int32_t lat = flat * 10000;
int32_t lon = flon * 10000;
int32_t alt = falt * 100;
mydata[9] = lat >> 16;
mydata[10] = lat >> 8;
mydata[11] = lat;
mydata[12] = lon >> 16;
mydata[13] = lon >> 8;
mydata[14] = lon;
mydata[15] = alt >> 16;
mydata[16] = alt >> 8;
mydata[17] = alt;
}
void Tem()
{
sensors.requestTemperatures();
temperature = sensors.getTempCByIndex(0); //Temperature detection
turbidity1 = analogRead(Turbidity_dpin); //Get A0 Status
float voltage = turbidity1 * (5.0 / 1024.0);
turbidity = ((-1120.4*voltage*voltage)+(5742.3*voltage)-(4352.9));
mydata[2] = temperature;
// mydata[3]= ; //removed from mydata above
mydata[6] = turbidity;
}
void printdata(){
Serial.print(F("########### "));
Serial.print(F("NO."));
Serial.print(count);
Serial.println(F(" ###########"));
Serial.println(F("The temperautre and turbidity :"));
Serial.print(F("["));
Serial.print(temperature);
Serial.print(F("℃"));
Serial.print(F(","));
Serial.print(turbidity);
Serial.print(F("%"));
Serial.print(F("]"));
Serial.println(F(""));
if(flon!=1000.000000)
{
Serial.println(F("The longtitude and latitude and altitude are:"));
Serial.print(F("["));
Serial.print(flon);
Serial.print(F(","));
Serial.print(flat);
Serial.print(F(","));
Serial.print(falt);
Serial.print(F("]"));
Serial.println(F(""));
count++;
}
smartdelay(1000);
}
static void smartdelay(unsigned long ms)
{
unsigned long start = millis();
do
{
while (ss.available())
{
gps.encode(ss.read());
}
} while (millis() - start < ms);
}
void loop() {
os_runloop_once();
}