Device not activated Lora feather 32u4 RFM9X

Hello everyone,
I am trying to connect an Adafruit Lora feather 32u4 RFM9X. I followed this tutorial:
https://www.thethingsnetwork.org/labs/story/using-adafruit-feather-32u4-rfm95-as-an-ttn-node

The problem:
However the output I get on the serial monitor continuously is:

Packet queued
60890147: EV_TXCOMPLETE (includes waiting for RX windows)
VBat: 4.32
Packet queued
62271171: EV_TXCOMPLETE (includes waiting for RX windows)
VBat: 4.32
Packet queued

Nothing shows up in the console (no data), it also says that the status of the device is “never seen”.

What I tried:
I checked out this link where mathijs suggested the LSB and MSB first. https://github.com/matthijskooijman/arduino-lmic/issues/108
I though maybe the problem is related to range. The nearest gateway is about 500 metres away. The Adafruit page says LoRa range should be 2km with a unidirectional antenna. I am powering the device with just a USB connected to my PC (i.e. no batteries).

Code

#include <lmic.h>
#include <hal/hal.h>
#include <SPI.h>

// LoRaWAN NwkSKey, network session key
// This is the default Semtech key, which is used by the early prototype TTN
// network.MSB!
static const PROGMEM u1_t NWKSKEY[16] = { 0xAB, 0x1A, 0xB1, 0x64, 0x37, 0xAE, 0xF2, 0xBB, 0x93, 0xB3, 0xD8, 0xBC, 0x8B, 0xC4, 0x10, 0x93 };

// LoRaWAN AppSKey, application session key
// This is the default Semtech key, which is used by the early prototype TTN
// network. MSB!
static const u1_t PROGMEM APPSKEY[16] = { 0x64, 0x09, 0x0B, 0x76, 0x6F, 0x39, 0xBD, 0x85, 0x49, 0xFB, 0xF7, 0x26, 0xD4, 0xCC, 0xB4, 0xD5 };

// LoRaWAN end-device address (DevAddr) LSB! 
static const u4_t DEVADDR[4] = { 0x83, 0x19, 0x01, 0x26 } ; // <-- Change this address for every node!

// These callbacks are only used in over-the-air activation, so they are
// left empty here (we cannot leave them out completely unless
// DISABLE_JOIN is set in config.h, otherwise the linker will complain).
void os_getArtEui (u1_t* buf) { }
void os_getDevEui (u1_t* buf) { }
void os_getDevKey (u1_t* buf) { }

static uint8_t mydata[] = "Hello, world!";
static osjob_t sendjob;

// Schedule TX every this many seconds (might become longer due to duty
// cycle limitations).
const unsigned TX_INTERVAL = 20;

//// Pin mapping
//const lmic_pinmap lmic_pins = {
//    .nss = 6,
//    .rxtx = LMIC_UNUSED_PIN,
//    .rst = 5,
//    .dio = {2, 3, 4},
//};

// Pin mapping

const lmic_pinmap lmic_pins = {

    .nss = 8,

    .rxtx = LMIC_UNUSED_PIN,

    .rst = 4,

    .dio = {7, 6, LMIC_UNUSED_PIN},

};



void onEvent (ev_t ev) {
    Serial.print(os_getTime());
    Serial.print(": ");
    switch(ev) {
        case EV_SCAN_TIMEOUT:
            Serial.println(F("EV_SCAN_TIMEOUT"));
            break;
        case EV_BEACON_FOUND:
            Serial.println(F("EV_BEACON_FOUND"));
            break;
        case EV_BEACON_MISSED:
            Serial.println(F("EV_BEACON_MISSED"));
            break;
        case EV_BEACON_TRACKED:
            Serial.println(F("EV_BEACON_TRACKED"));
            break;
        case EV_JOINING:
            Serial.println(F("EV_JOINING"));
            break;
        case EV_JOINED:
            Serial.println(F("EV_JOINED"));
            break;
        case EV_RFU1:
            Serial.println(F("EV_RFU1"));
            break;
        case EV_JOIN_FAILED:
            Serial.println(F("EV_JOIN_FAILED"));
            break;
        case EV_REJOIN_FAILED:
            Serial.println(F("EV_REJOIN_FAILED"));
            break;
        case EV_TXCOMPLETE:
            Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
            if (LMIC.txrxFlags & TXRX_ACK)
              Serial.println(F("Received ack"));
            if (LMIC.dataLen) {
              Serial.println(F("Received "));
              Serial.println(LMIC.dataLen);
              Serial.println(F(" bytes of payload"));
            }
            // Schedule next transmission
            os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send);
            break;
        case EV_LOST_TSYNC:
            Serial.println(F("EV_LOST_TSYNC"));
            break;
        case EV_RESET:
            Serial.println(F("EV_RESET"));
            break;
        case EV_RXCOMPLETE:
            // data received in ping slot
            Serial.println(F("EV_RXCOMPLETE"));
            break;
        case EV_LINK_DEAD:
            Serial.println(F("EV_LINK_DEAD"));
            break;
        case EV_LINK_ALIVE:
            Serial.println(F("EV_LINK_ALIVE"));
            break;
         default:
            Serial.println(F("Unknown event"));
            break;
    }
}

//void do_send(osjob_t* j){
//    // Check if there is not a current TX/RX job running
//    if (LMIC.opmode & OP_TXRXPEND) {
//        Serial.println(F("OP_TXRXPEND, not sending"));
//    } else {
//        // Prepare upstream data transmission at the next possible time.
//        LMIC_setTxData2(1, mydata, sizeof(mydata)-1, 0);
//        Serial.println(F("Packet queued"));
//    }
//    // Next TX is scheduled after TX_COMPLETE event.
//}


void do_send(osjob_t* j){

    // Check if there is not a current TX/RX job running

    if (LMIC.opmode & OP_TXRXPEND) {
        Serial.println(F("OP_TXRXPEND, not sending"));
    } else {
        // Prepare upstream data transmission at the next possible time.
        #define VBATPIN A9
        float measuredvbat = analogRead(VBATPIN);
        measuredvbat *= 2;    // we divided by 2, so multiply back
        measuredvbat *= 3.3;  // Multiply by 3.3V, our reference voltage
         measuredvbat /= 1024; // convert to voltage
        byte buffer[8];
        dtostrf(measuredvbat, 1, 2, buffer);
        String res = buffer;
        res.getBytes(buffer, res.length() + 1);
        Serial.print("VBat: " ); Serial.println(measuredvbat);
       LMIC_setTxData2(1, (uint8_t*) buffer, res.length(), 0);
        Serial.println(F("Packet queued"));
    }

    // Next TX is scheduled after TX_COMPLETE event.

}

void setup() {
    Serial.begin(115200);
    Serial.println(F("Starting"));

    #ifdef VCC_ENABLE
    // For Pinoccio Scout boards
    pinMode(VCC_ENABLE, OUTPUT);
    digitalWrite(VCC_ENABLE, HIGH);
    delay(1000);
    #endif

    // LMIC init
    os_init();
    // Reset the MAC state. Session and pending data transfers will be discarded.
    LMIC_reset();

    // Set static session parameters. Instead of dynamically establishing a session
    // by joining the network, precomputed session parameters are be provided.
    #ifdef PROGMEM
    // On AVR, these values are stored in flash and only copied to RAM
    // once. Copy them to a temporary buffer here, LMIC_setSession will
    // copy them into a buffer of its own again.
    uint8_t appskey[sizeof(APPSKEY)];
    uint8_t nwkskey[sizeof(NWKSKEY)];
    memcpy_P(appskey, APPSKEY, sizeof(APPSKEY));
    memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY));
    LMIC_setSession (0x1, DEVADDR, nwkskey, appskey);
    #else
    // If not running an AVR with PROGMEM, just use the arrays directly
    LMIC_setSession (0x1, DEVADDR, NWKSKEY, APPSKEY);
    #endif

    #if defined(CFG_eu868)
    // Set up the channels used by the Things Network, which corresponds
    // to the defaults of most gateways. Without this, only three base
    // channels from the LoRaWAN specification are used, which certainly
    // works, so it is good for debugging, but can overload those
    // frequencies, so be sure to configure the full frequency range of
    // your network here (unless your network autoconfigures them).
    // Setting up channels should happen after LMIC_setSession, as that
    // configures the minimal channel set.
    // NA-US channels 0-71 are configured automatically
    LMIC_setupChannel(0, 868100000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
    LMIC_setupChannel(1, 868300000, DR_RANGE_MAP(DR_SF12, DR_SF7B), BAND_CENTI);      // g-band
    LMIC_setupChannel(2, 868500000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
    LMIC_setupChannel(3, 867100000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
    LMIC_setupChannel(4, 867300000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
    LMIC_setupChannel(5, 867500000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
    LMIC_setupChannel(6, 867700000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
    LMIC_setupChannel(7, 867900000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
    LMIC_setupChannel(8, 868800000, DR_RANGE_MAP(DR_FSK,  DR_FSK),  BAND_MILLI);      // g2-band
    // TTN defines an additional channel at 869.525Mhz using SF9 for class B
    // devices' ping slots. LMIC does not have an easy way to define set this
    // frequency and support for class B is spotty and untested, so this
    // frequency is not configured here.
    #elif defined(CFG_us915)
    // NA-US channels 0-71 are configured automatically
    // but only one group of 8 should (a subband) should be active
    // TTN recommends the second sub band, 1 in a zero based count.
    // https://github.com/TheThingsNetwork/gateway-conf/blob/master/US-global_conf.json
    LMIC_selectSubBand(1);
    #endif

    // Disable link check validation
    LMIC_setLinkCheckMode(0);

    // TTN uses SF9 for its RX2 window.
    LMIC.dn2Dr = DR_SF9;

    // Set data rate and transmit power for uplink (note: txpow seems to be ignored by the library)
    LMIC_setDrTxpow(DR_SF7,14);

    // Start job
    do_send(&sendjob);
}

void loop() {
    os_runloop_once();
}
1 Like