

MLS Migration Guide

Contents

1 MIGRATING MLS FROM 1_0_P_3 TO 1_0_P_4 ..3

1.1 New features and enhancements of MLS_SDK_1_0_P_43
1.1.1 FUOTA packages library ..3
1.1.2 Logging module..3

1.2 File additions ...3
1.3 MLS API changes ...3

1.3.1 Set/Get Attribute Addition/Modification/Removal..3

2 MIGRATING MLS FROM 1_0_P_2 TO 1_0_P_3 ..4

2.1 New features and enhancements of MLS_SDK_1_0_P_34
2.1.1 ECC608 Integration ..4

2.2 File additions ...4

2.3 MLS API Changes ...5

2.3.1 API Changes ..5

2.3.2 Set/Get Attribute Addition/Modification/Removal..5

3 MIGRATING MLS FROM 1_0_P_1 TO 1_0_P_2 ..5

3.1 New features and enhancements of MLS_SDK_1_0_P_25
3.1.1 Random Network Acquisition ...5

3.1.2 Join Request back-off mechanism ...6
3.1.3 Random channel selection algorithm enhancement7
3.1.4 Multiple multicast group support...7

3.1.5 MAC Level FSK support ...8
3.1.6 Fix for High Packet Loss in SF10 (In SAMR34 XPro)8

3.2 File additions ...8

3.3 MLS API Changes ...8

3.3.1 API Changes ..8
3.3.2 Set/Get Attribute Addition/Modification/Removal..9

4 MIGRATING MLS FROM 1_0_P_0 TO 1_0_P_1 .. 10

4.1 New features and enhancements of MLS_SDK_1_0_P_1 10
4.1.1 Support for Backup Sleep in PMM module .. 10
4.1.2 EDBG EUI Read as an ASF component .. 10

4.2 File additions ... 10
4.3 MLS API Changes ... 10

5 MLS SDK 1_0_P_0 .. 11

5.1 LoRaWAN Protocol Specification Details: ... 11
5.2 Highlights .. 11
5.3 Platforms supported .. 11
5.4 Applications Supported ... 11

5.5 Modified Files .. 12

6 REFERENCE DOCUMENTATION .. 12

1 Migrating MLS from 1_0_P_3 to 1_0_P_4
This guide provides all the information need for a customer to migrate the MLS LoRaWAN applications

implemented on MLS_SDK_1_0_P_3 available in SAM platforms (SAMR34) to MLS_SDK_1_0_P_4.

1.1 New features and enhancements of MLS_SDK_1_0_P_4

The following feature additions in MLS_SDK_1_0_P_4 are detailed below…

1. Feature: FUOTA packages library (libFUOTAPACKAGE_SAM0_GCC.a)

2. Feature: FUOTA NVM storage APIs

3. New application FUOTA_Demo added to demonstrate over-the-air upgrade

4. Simple log module with configure levels

5. General improvement and Bug fixes

1.1.1 FUOTA packages library

LoRaWAN specifies the following application layer messaging protocol to add over-the-air upgrade feature. They

are: Remote Multicast Setup, Fragmented Data Block Transport, Device Management. These application support

protocols are implemented and provided as a library in this release.

Protocol Interface Implementation

Remote Multicast Setup MCMPackageCore.h libFUOTAPACKAGE_SAM0_GCC.a

Fragmented data block transport FTMPackageCore.h libFUOTAPACKAGE_SAM0_GCC.a

Device Management DMPackageCore.h libFUOTAPACKAGE_SAM0_GCC.a

This FUOTA library is tested with Actility ThingPark FUOTA only.

1.1.2 Logging module

• A simple logging module with configurable levels, is provided in this release. This module employs the same

syntax as the printf(…) function to print UART log messages.

• The level of this log module is configurable through LOG_LEVEL=<LEVEL> define symbol from project

properties dialog.

• Available levels are: NONE, INFO, WARN, ERROR, DEBUG

1.2 File additions

• All files under apps/packages/ folder

• All files under apps/fuota_demo folder

• All fiels under thirdparty/wireless/services/log folder

1.3 MLS API changes

1.3.1 Set/Get Attribute Addition/Modification/Removal

These new set/get attributes are added in lorawan.h under enumeration LorawanAttributes_t.

Change Attribute ID Type Range R / W Default / Remarks

New MCAST_FCNT_DOWN_MIN uin32_t 0 – (2^32)-1 RW 0

New MCAST_FCNT_DOWN_MAX uin32_t 0 – (2^32)-1 RW 0

New MCAST_FREQUENCY uin32_t 0 – (2^32)-1 RW NA

New MCAST_DATARATE uin8_t Valid DR values RW NA

New MCAST_PERIODICITY uin8_t 0 – 7 RW NA

New SEND_DEVICE_TIME_CMD Trigger NA - Adds DeviceTimeReq in next uplink

New STACK_VERSION StackVersion_t NA R Release Version

New PACKET_TIME_ON_AIR Trigger NA - Return time-on-air for the given payload length

2 Migrating MLS from 1_0_P_2 to 1_0_P_3
This guide provides all the information need for a customer to migrate the MLS LoRaWAN applications

implemented on MLS_SDK_1_0_P_2 available in SAM platforms (SAMR34) to MLS_SDK_1_0_P_3.

2.1 New features and enhancements of MLS_SDK_1_0_P_3

The following feature additions in MLS_SDK_1_0_P_3 are detailed below…

1. Feature: ECC608 Integration
2. General improvement and Bug fixes.

2.1.1 ECC608 Integration

ECC608 is a cryptographic and key storage device. User can configure and provision the ECC608 in the way, the

keys used in Microchip Lorawan Stack (MLS) can be stored in the device and cannot be read back which

strengthens the level of security.

In MLS, support for using ATECC608A-MAHTN-T secure element is given. For more details, refer the links

available in Reference Documentation section.

Specific Notes:

• ECC608A Usage during LoRaWAN Operation

1. During Join operation, MLS uses ECC608A device (APP EUI, DEV EUI and APP KEY) to

 prepare Join Request frame.

2. Join Accept frame Integrity check is done using APP KEY stored inside ECC608A device.

3. Application Session key and Network session key is derived from APP KEY stored inside ECC608A

device.

4. After device reset, MLS reads sessions keys from ECC608A device.

5. APP KEY is not readable from ECC608A device. Only Sessions keys are readable.

6. All session key read operations between SAMR34 and ECC608A device happens over Secure I2C

lines. This provides security in case of someone listening to I2C lines.

7. APP EUI and DEV EUI are read from ECC608A device and stored in SAMR34 RAM.

• ECC608 can be used for key storage in the application by adding a MACRO named –

CRYPTO_DEV_ENABLED in project settings.

• Security Abstraction Layer (SAL) type has to be configured as “ecc608” through ASF wizard.

2.2 File additions

• All files in lorawan/sal folder

https://www.microchipdirect.com/product/ATECC608A-MAHTN-T?_ga=2.257593352.2057683746.1563171669-850064510.1528880956

2.3 MLS API Changes

2.3.1 API Changes

Following APIs are added/modified/removed.

Sl. No. Function Name Comments

1. SalStatus_t SAL_Init(void);

This function initializes the

security modules like AES,

ECC608 (If used).

Return Status : value of type

SalStatus_t

* SAL_SUCCESS -- when

initialization is successful

 * SAL_FAILURE -- when

initialization of AES/ECC608 is

failed

2.3.2 Set/Get Attribute Addition/Modification/Removal

These new set/get attributes are added in lorawan.h under enumeration LorawanAttributes_t.

Change
Type

NAME Type Size Value Read/Write Default

value

New CRYPTODEVICE_ENABLED bool 1 Byte True/false read/write false

New MAX_FCNT_PDS_UPDATE_VAL uint8_t 1 Byte 0 to 8 read/write 1

3 Migrating MLS from 1_0_P_1 to 1_0_P_2
This guide provides all the information need for a customer to migrate the MLS LoRaWAN applications

implemented on MLS_SDK_1_0_P_1 available in SAM platforms (SAMR34) to MLS_SDK_1_0_P_2.

3.1 New features and enhancements of MLS_SDK_1_0_P_2

The following feature additions in MLS_SDK_1_0_P_2 are detailed below…

3. Feature: Random Network Acquisition for NA915 and AU915 bands.
4. Feature: Join request back-off mechanism – Supported bands EU868, AS923, JPN923, KR923, IND865.
5. Feature: Enhancing random channel selection algorithm – All bands.
6. Feature: Multiple multicast group support – Class C and All bands.
7. General improvement and Bug fixes.

3.1.1 Random Network Acquisition

Definition as in Specification:

For rapid network acquisition in mixed channel plan environments, it is further recommended that the device

follow a channel selection sequence (still random) which efficiently probes the groups of nine (8 + 1) channels

which are typically implemented by smaller gateways (channel groups 0-7+64, 8-15+65, etc.).

Specific Notes:

1. Join request shall be transmitted from a random channel on each sub-band till a successfully completed.

2. Once join procedure is success, the sub-band with which Join procedure is success those 9 channels

only be enabled.

3. After successful Join procedure, next join request will start from sub-band 1 again.

4. Last used sub-band shall be stored in PDS and to be restored after system reset.

5. On join failure case, if all the join request is denied for 8 sub-bands, then the device shall restart the join

request from sub-band 1 and continue.

6. This feature is enabled by a MACRO named – RANDOM_NW_ACQ in project settings.

7. If user/application knew of the channels with which the network operates (For Example in case of ABP

devices), RANDOM_NW_ACQ macro can be made as ‘0’ in project setting and define the sub-band in

conf_app.h as done previously.

8. RANDOM_NW_ACQ is only for OTAA joining devices since we know the Sub band of End device after

receiving the Join Accept from the particular sub-band.

3.1.2 Join Request back-off mechanism

Definition as in Specification:

Defined in section 7 Retransmissions back-off

Specific Notes:

1. Retransmission back-off mechanism is avoid flooding the network when all the nodes in the network start-up

at the same time.

2. Details are given in section 7 of LoraWAN 1.0.2 core specification.

3. This feature is enabled by a macro JOIN_BACKOFF_SUPPORT in FEATURES_SUPPORTED Macro for

each band in conf_regparams.h

4. This is enabled by default in all conf_regparams.h for all bands. For demo purpose Join backoff support is

disabled in End device demo application. It has to be enabled during production where all the nodes in the

network start-up at the same time.

5. This feature is added for EU868, AS923, JPN923, KR923, IND865, NA915 and AU915 bands.

6. After each join failure, the application must wait for certain time before sending the next Join request.

7. A new get attribute is added to inform the application about the value of this wait time. Details are given in API

changes section below.

8. Application can get the wait time value and start a timer. At the expiry of the timer, can re-send the Join

request.

3.1.3 Random channel selection algorithm enhancement

Definition as in Specification:

The end-device SHALL change channel for every transmission.

Specific Notes:

1. Added support to select channels randomly and not using the same channel used for previous

transmission.

2. Only exception to the check is, if only one channel is enabled by Application/Network Server, then use the

same channel used for previous transmission.

3.1.4 Multiple multicast group support

Definition as in Specification:

N/A

Specific Notes:

1. In previous version, application can create only one Multicast group.

2. In this release added support for creating up to 5 groups.

3. New/Modified set/get attributes are defined in API Changes section below.

3.1.5 MAC Level FSK support

FSK data-rate is tested in MAC Level and the payload size is limited to 64 bytes (Phy level) due to the

limitation in Transceiver.

3.1.6 Fix for High Packet Loss in SF10 (In SAMR34 XPro)

Higher Packet loss have been observed when device is receiving in SF10 datarate. In order to mitigate it,

TCXO_ALWAYS_ON macro is added, as a compile-time option, in conf_board.h file. With this

configuration, radio oscillator will be in ON state irrespective of Transceiver mode (Either in tx/rx or Sleep).

Note: By default, TCXO_ALWAYS_ON macro is undefined

3.2 File additions

No new file additions.

3.3 MLS API Changes

3.3.1 API Changes

Following APIs are added/modified/removed.

Sl.
No.

Old version New version Comments

2.

/* Function Pointer to
Activation Data callback */

typedef void

(*JoinResponseCb_t)(bool

status);

/* Function Pointer to Activation Data
callback */

typedef void

(*JoinResponseCb_t)(StackRetStatus_t

status);

Join request

callback

function.

▪ This function pointer definition is in lorawan.h.

▪ Join request callback function is defined in the application to status of Join request. In this version, the

return parameter is changed from ‘bool’ to ‘StackRetStatus_t’.

▪ StackRetStatus_t is an enumeration defined in stack_common.h.

▪ From this return variable following status are valid for Join callback function

o LORAWAN_SUCCESS – Infers that join procedure is success.

o LORAWAN_NO_CHANNELS_FOUND – Infers that the Join request wait timer is running and join

request cannot be sent at this time.

o Else the join procedure is failed.

o The LoRaWAN Mote example application is updated to reflect this change.

3.3.2 Set/Get Attribute Addition/Modification/Removal

These new set/get attributes are added in lorawan.h under enumeration LorawanAttributes_t.

Change
Type

NAME Type Size Value Read/Write Default

value

New MCAST_ENABLE uint8_t bool True/false read/write -

New MCAST_APPS_KEY uint8_t 8 bytes Array read/write -

New MCAST_NWKS_KEY uint8_t 8 bytes Array read/write -

New MCAST_GROUP_ADDR uint8_t 4 bytes Array read/write -

New MCAST_FCNT_DOWN uint16_t 2 Bytes Counter read -

New PENDING_JOIN_DUTY_CYCLE

_TIME

uint32_t 4 bytes Milli

Seconds

read -

4 Migrating MLS from 1_0_P_0 to 1_0_P_1
This guide provides all the information need for a customer to migrate the MLS LoRaWAN applications

implemented on MLS_SDK_1_0_P_0 available in SAM platforms (SAMR34) to MLS_SDK_1_0_P_1.

4.1 New features and enhancements of MLS_SDK_1_0_P_1

The following feature additions in MLS_SDK_1_0_P_1 are detailed below…

1. Feature: Support for Backup sleep in PMM module.

2. Feature: EDBG EUI Read as an ASF component.

3. General improvement and Bug fixes.

4.1.1 Support for Backup Sleep in PMM module

This release adds support for BACKUP sleep mode. Utilization of this mode can result in longer battery life.

Application can utilize this mode, by the existing PMM_Sleep() API itself. PMM_Sleep takes

PMM_SleepReq_t structure as its parameter. In order to request a BACKUP mode sleep, application shall

set SLEEP_MODE_BACKUP in 'sleep_mode' member variable in PMM_SleepReq_t structure. The

minimum and maximum sleep duration for backup sleep is, as same as standby sleep.

Since BACKUP sleep provides no RAM retention, device will reset on wake-up. Therefore, for the

application to function properly after wake-up, PDS support is required. This will ensure the device is

brought up to previous state before sleep. Also, the application and the stack must completely idle in

order to go to BACKUP sleep mode - all timers must be stopped. Again, this is due to no-RAM-retention

after wake-up.

4.1.2 EDBG EUI Read as an ASF component

This ASF component is used read the MAC EUI from EDBG Controller of SAMR34 Xplained Pro using I2C

Protocol.

4.2 File additions

No new file additions.

4.3 MLS API Changes

No modification to APIs.

5 MLS SDK 1_0_P_0
MLS provides a solution for the LoRaWAN end-device that is used for Internet of Things (IoT) applications.

LoRa® is a wireless communication protocol designed to allow low-power end-devices to communicate

over long range and at low data rates. LoRaWAN is a network layer which operates over LoRa communication

layer and act as Medium access control layer.

LoRaWAN specification and its development is overseen by LoRa Alliance. The specification is meant for

secure communication of end-devices and ensures inter-operability within the LoRa network.

5.1 LoRaWAN Protocol Specification Details:

LoRaWAN Core Specification Version 1.0.2

LoRaWAN Regional Specification version 1.0.2rB

Supported Device Classes Class A & C

Network Join Modes ABP and OTAA

5.2 Highlights

• Dynamic selection over 6 different regional bands

▪ EU868

▪ NA915

▪ AU915

▪ AS923

▪ KR923

▪ IN865

• Channel Usage Mechanisms

▪ Duty Cycle, Dwell Time and Listen Before Talk.

▪ ADR – Adaptive Data Rate is supported.

• All MAC Level Commands are Supported.

• Low Power LoRaWAN Solution using Power Management Module (PMM).

• Support for Persistent Data Server (PDS).

• Support for Low power sleep modes – Standby.

5.3 Platforms supported

SAMR34 Xplained Pro

5.4 Applications Supported

▪ LoRaWAN Mote Application.

▪ Low Power Application.

5.5 Modified Files

All the files in \thirdparty\wireless\lorawan\ are new additions.

6 Reference Documentation

Following documents can be used for further study:

1. SAM R34 MLS Getting Started Guide

2. MLS API Guide

3. SAMR34/R35 Low Power LoRa® Sub-GHz SiP Datasheet

4. https://www.microchip.com/design-centers/security-ics/cryptoauthentication/cloud-authentication/lora-security-
with-tti-join-server

5. https://github.com/MicrochipTech/cryptoauthlib/wiki/TTN-Getting-Started

http://ww1.microchip.com/downloads/en/DeviceDoc/SAM-R34-MLS-Getting-Started-Guide-User-Guide-DS50002812A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/SAM-R34-R35-Microchip-LoRaWAN-Stack-Software-API-Reference-Manual-DS70005382A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/SAMR34-R35-Low-Power-LoRa-Sub-GHz-SiP-Data-Sheet-DS70005356B.pdf
https://www.microchip.com/design-centers/security-ics/cryptoauthentication/cloud-authentication/lora-security-with-tti-join-server
https://www.microchip.com/design-centers/security-ics/cryptoauthentication/cloud-authentication/lora-security-with-tti-join-server
https://github.com/MicrochipTech/cryptoauthlib/wiki/TTN-Getting-Started

